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Abstract

In Experiment 5: Optical Pyrometer, some of the fundamental operating principles of pyrometry are explored.

In addition, the thermal radiative heat transfer property of surface emissivity is thoroughly investigated

through the determination of the emissivity of a heated object. The measured emissivity of the object does

not fully agree with expected results. As a result, the possibility that either the body is not a black body or

that the optical pyrometer is not adequately calibrated is explored.

Objective

The goal of this experiment is to investigate some of the fundamentals of radiation heat transfer using an

optical pyrometer.

Background and experimental method

Theoretical background

(Please note that in general this is not required, but it was felt that the laboratory manual

was deficient and therefore this section is necessary to review some of the fundamentals to

fully appreciate the analysis.)

Pyrometry is a means by which the temperature of a body is determined through the measurement of thermal

radiation emitted by that body (Beckwith et al., 1993). The intensity of the emitted radiation depends upon

the temperature of the body and the wavelength of the electromagnetic radiation.

If a body internally absorbs all incident radiation, then it is called a black body. As a consequence of

energy conservation, a black body also emits the maximum amount of energy. Hence a black body is also a

perfect emitter of thermal radiation. The hemispherical emissive power of a black body is given by Planck’s

law,

eλb =
c1

λ5
[
exp

(
c2

λTb

)
− 1
] . (1)

When λTb < 3000 µmK, Eq. (1) can be approximated within 1% (Siegel and Howell, 1992) by Wien’s formula,

eλb ≈ c1

λ5 exp
(

c2
λTb

) . (2)

Optical pyrometers measure the emissive power of a body at a single wavelength. This measurement is

accomplished by matching the radiative intensity of an electrically-heated tungsten filament to the radiative

intensity emanating from the body. When the intensities are matched, the temperature of a black body is

then determined from Eq. (2).
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Figure 1. A comparison of emissive powers from a Black body and a “real” surface. Both bodies are assumed

to be at 1000 K

Real surfaces, however, are not black bodies, i.e. perfect emitters. Consequently, the emissive power

of a real surface is less than that of a black body. Figure 1 compares the emissive powers of a black

body and a “real” real body as a function of wavelength. The optical pyrometer, however, only detects

radiative intensity. Therefore it is not able to distinguish between a black body and a “real” surface. As a

consequence, if the optical pyrometer were used to measure the temperature of a non-black surface such as

the one in Figure 1, the pyrometer would measure the emissive power of the non-black body and output the

temperature of a black body corresponding to the measured emissive power. From Figure 1, it is evident

that the “apparent black body” temperature indicated by the pyrometer would be substantially lower than

the actual temperature of the surface.

To compensate for the non-ideal behavior of real surfaces, the spectral emissivity defined as

ελ =
eλ

eλb

, (3)

is used to relate the actual spectral emissive power, eλ to the spectral emissive power of a black body at the

same temperature. Unfortunately, the spectral emissive power of a real surface is not given by Planck’s law.
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In the case of monochromatic thermal radiation, however, the actual temperature of the real surface can be

estimated by approximating eλ with Eq. (2). Thus the actual temperature, TA can be found from

eλ ≈ c1

λ5 exp
(

c2
λTA

) . (4)

Substituting Eq. (4) and Eq. (2) into Eq. (3), yields

1
TA

=
1
Tb

+
λ

c2
ln (ελ) , (5)

which can be used to compute the actual temperature of the body, provided that the spectral emissivity of

the actual surface is known.

Experiment methodology

To investigate the basic operating principles of the optical pyrometer, a ceramic object is placed inside a

laboratory furnace and its temperature is measured over a range of furnace power settings. The ends of

the furnace are open, consequently the object is completely visible while it is being heated. The optical

pyrometer is then aimed at the object and is used to measure the temperature of the body. Figure 2 in the

laboratory manual (Liu et al., 1999) is a schematic diagram of the experiment set-up.

To determine the spectral emissivity of the body, Eq. (5) may be used if the actual temperature of the

body is known. The actual temperature of the body is measured with a Platinel II thermocouple. This

thermocouple is referenced to a pair of isothermal terminals located in the base of the furnace. The reference

temperature of the terminals is measured with a thermometer. The thermocouple output is measured with

a 6 1
2 -digit digital multimeter.

The experiments are conducted by first heating the body to approximately 1000 ◦C. After the body

reaches this temperature, the furnace power is reduced and the body is allowed to reach a steady state. The

steady-state temperature is measured with both the optical pyrometer and the thermocouple. Following

these measurements, the furnace power is reduced and the body is again allowed to reach steady state.

Again, temperature measurements are obtained. This process is repeated to obtain approximately ten data

points which span the temperature range of 750 ◦C to 1000 ◦C.

Results and discussion

1. Compilation of temperature measurements and the determination of the

thermocouple temperature.

The data listed in Table 1 were obtained from measurements of the optical pyrometer, thermocouple, and

the reference junction thermometer. An uncertainty of ±3 ◦C is assumed for the temperature indicated by
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Table 1. Raw data obtained from the optical pyrometer, thermocouple, and thermometer.

Measurement Pyrometer (◦C) Thermocouple emf (mV) Reference junction (◦C)

1 933 ± 3 39.224 ± 0.006 32.5 ± 0.5

2 922 ± 3 38.865 ± 0.005 33.2 ± 0.5

3 892 ± 3 37.523 ± 0.005 35.2 ± 0.5

4 862 ± 3 36.015 ± 0.005 37.8 ± 0.5

5 858 ± 3 35.833 ± 0.005 38.2 ± 0.5

6 819 ± 3 34.038 ± 0.005 39.8 ± 0.5

7 806 ± 3 33.547 ± 0.005 40.2 ± 0.5

8 781 ± 3 32.088 ± 0.005 40.2 ± 0.5

9 774 ± 3 31.737 ± 0.005 40.2 ± 0.5

the optical pyrometer. This estimate is based upon the smallest division of the optical pyrometer scale. The

thermocouple emf is measured with a Keithley 2000 digital multimeter, hence the uncertainty is determined

from the DC accuracy specifications for this device given by Liu et al.. A sample calculation to determine the

uncertainty in the thermocouple emf is given by Eq. (12) in the Appendix. The uncertainty in the reference

junction temperature is estimated to be the smallest division on the thermometer, i.e. ±1 ◦C.

To compare the actual temperature of the body to the temperature indicated by the optical pyrome-

ter, it is necessary to determine the actual temperature of the body from the thermocouple and reference

junction data presented in Table 1 using the law of intermediate temperatures. First, the thermocouple

emf corresponding to the reference temperature is determined using the thermocouple table supplied in the

laboratory. Next, the emf of the reference junction is added to the measured emf of the thermocouple.

Finally, the thermocouple table is used to determine the temperature of the body from the combined emf.

The results of these computations are presented in Table 2. Sample calculations which demonstrate this

procedure are presented in the Appendix.

2. The determination of neutral density filter transmisivities.

The answer to this question was omitted for brevity. The analysis is identical to the determination of

the surface emissivity of the body. In general, students are required to answer all bolded questions in the

laboratory manual.
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Table 2. Optical pyrometer and body temperatures.

Measurement Pyrometer (K) Thermocouple (K)

1 1206 ± 3 1240 ± 10

2 1196 ± 3 1230 ± 10

3 1165 ± 3 1200 ± 9

4 1135 ± 3 1164 ± 9

5 1131 ± 3 1160 ± 9

6 1092 ± 3 1117 ± 8

7 1079 ± 3 1106 ± 8

8 1054 ± 3 1071 ± 8

9 1047 ± 3 1063 ± 8

3. Determination of a calibration equation to relate the temperature of the test

body to the pyrometer output.

In Table 2, one immediately notices that the temperatures indicated by the optical pyrometer and the

thermocouple differ. There are two possible explanations: (1) the body is not a perfect emitter of thermal

radiation., and (2) the pyrometer is not properly calibrated. If one desired to measure the temperature of

the body with the optical pyrometer and was not concerned about the cause of the discrepancy between the

pyrometer and actual body temperature, then a “calibration” equation may be developed to directly relate

the readings on the optical pyrometer to the actual body temperature.

To develop the “calibration” equation, Eq. (5) (Eq. (6) in Liu et al.) is rearranged to yield,

TA =

(
Tb

1 + λTb
c2

ln ελ

)
. (6)

While Eq. (6) is non-linear,

λTb

c2
ln ελ ≈ 1, (7)

for the range of temperatures encountered. Therefore Eq. (6) may be approximated by

TA = mTb + b. (8)

The data listed in Table 2 is plotted in Figure 2. The fitted line and confidence intervals are obtained from

linear regression. The confidence intervals are determined as ±tα,νSee. The “calibration” equation for the

body of interest is then

TA = 1.11Tb − 100 ± 6 K. (9)
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Figure 2. Determination of the calibration equation for the body.

4. Discussion of the emissivity of the body.

(a) Determination of the body surface emissivity.

If it is desired to use the optical pyrometer to measure the temperature of an object which is only slightly

different from the one used in this experiment, then Eq. (9) is of little use. Further, if a different sensor were

used to measure the temperature of the test body in this experiment, Eq. (9) would be useless. Therefore, a

more useful approach would be to use Eq. (5) to determine the emissivity of the body. Hence Eq. (5) could

be used to compute the actual temperature of the body regardless of the sensor used.

To find the emissivity of the test body, one notes that Eq. (5) is linear in 1
TA

and 1
Tb

. Hence, 1
TA

versus
1

Tb
is plotted in Figure 3. The uncertainties in 1

Tb
and 1

TA
are computed with Eq. (22) and Eq. (23) in the

Appendix. From a linear regression analysis,

1
TA

=
1.07
Tb

− 7.95 × 10−5 K−1. (10)
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Figure 3. Determination of the emissivity of the body.

By comparison to Eq. (5),

c2

λ
ln ελ = −7.95 × 10−5 K−1. (11)

Using c2 = 14384 µmK and λ = 0.66 µm yields ελ = 0.2 ± 0.1.

(b) Explanation of the body and apparent temperature discrepancy.

There exist two possible explanations for the discrepancy between the actual body temperature and the

temperature registered by the pyrometer: The object may not be a black body, or the pyrometer may not

be correctly calibrated. In addition, it is also possible that the object is a non-black body and the pyrometer

is not correctly calibrated.

First, if the object is not a black body, then it will have an emissivity 0 < ελ < 1. Using Eq. (5), the
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Figure 4. Comparison of the actual data and possible emissivities of the body.

range of possibilities for the body are plotted in Figure 4. From Figure 4, it is clear that it is physically

possible for the body to not be a black body. In Figure 4, the data obtained for this experiment fall below the

line corresponding to ελ = 0.4, indicating that the actual emissivity is much higher. From the data analysis

of this experiment, the emissivity was found to be ελ = 0.2 ± 0.1, consequently, the temperature predicted

by tempeq and the actual body temperatures do not strictly agree. Upon consideration of the 80% relative

uncertainty in ελ, however, it is possible that the agreement is much better than indicated in Figure 4.

Second, if the pyrometer were not correctly calibrated, then physically unrealistic values of ελ > 1 would

probably be observed. Because the results in Figure 4 are physically possible, one cannot conclude that the

pyrometer is not calibrated correctly.

Nonetheless, the fact that perfect agreement is not obtained between the experimental data and Eq. (5)

when ελ = 0.2 does not support the conclusion that the pyrometer is calibrated correctly. Moreover, one has

also to consider how the pyrometer calibration would be disturbed. The temperature scale on the pyrometer
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cannot be changed; the monochromatic filter also cannot change. The only possibility left is that the tungsten

filament has eroded. This could cause the relationship between the applied current and the emissive power

to change slightly, thereby giving causing the pyrometer to indicate a slightly inaccurate temperature.

Conclusions and recommendations

In this experiment, measurements of the temperature of a body heated in a furnace are compared to mea-

surements obtained from an optical pyrometer. These measurements are then used to develop a calibration

equation for the optical pyrometer and the body which will yield the actual temperatures of the body di-

rectly. Additionally, an attempt was made to determine the emissivity of the body from the experimental

data. From this analysis, the emissivity of the body was found to be ελ = 0.2 ± 0.1. When the experi-

mental results are compared to those predicted by an equation typically used in pyrometry, it is found that

ελ > 0.4. Consequently, it is possible that either the body is not black, or that the pyrometer is not correctly

calibrated. Neither of these possibilities have been conclusively identified as the cause of the discrepancy.

Obviously, the only way to resolve this controversy is to obtain a carefully designed black body and repeat

this experiment. The need for a better black body is apparent because the uncertainty in the temperature

of the body used in this experiment is much larger than the pyrometer resolution. Consequently, the body

in this experiment is not suitable as a calibration standard. Therefore the any further experiments with this

body will yield results which will be inconclusive.
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Nomenclature

λ Wavelength of emitted radiation, (µm), Eq. (1).

Tb Black body temperature, (K), Eq. (1).
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emf Thermocouple emf, (mV), Eq. (14).

b Intercept of a fitted line, Eq. (8).

c1 Constant, c1 = 374.18 MWµm4

m2 , Eq. (1).

c2 Constant, c2 = 14388 µmK, Eq. (1).

m Slope of a fitted line, Eq. (8).

See Standard error of estimate, Eq. (8).

T Temperature, (◦C), Eq. (14).

tα,ν Student-t variable, Eq. (8).

eλ Spectral hemispherical emissive power,
(

W
m2µm

)
, Eq. (3).

eλb Black body spectral hemispherical emissive power,
(

W
m2µm

)
, Eq. (1).

emf1 Tabulated thermocouple emf, (mV), Eq. (13).

emf2 Tabulated thermocouple emf, (mV), Eq. (13).

emfM Measured thermocouple emf, (mV), Eq. (16).

emfREF The emf of a virtual thermocouple at the reference temperature, (mV), Eq. (13).

emfT Combined thermocouple and reference junction emf, (mV), Eq. (16).

ελ Spectral emissivity, dimensionless, Eq. (3).

TA Actual surface temperature, (K), Eq. (4).

T1 Tabulated thermocouple temperature (◦C), Eq. (13).

T2 Tabulated thermocouple temperature, (◦C), Eq. (13).

UemfTC Uncertainty in the thermocouple emf, (mV), Eq. (12).
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Appendix

Sample calculations

Thermocouple emf uncertainty

From Liu et al. (1999), the DC accuracy specifications for the Keithley 2000 digital multimeter are:

± (50ppm RDG + 35ppm RANGE), where ppm represents parts per million
(
10−6

)
. To illustrate, 39.2241 mV

was measured on the Keithley 2000. Hence the uncertainty in this measurement is determined as:

UemfTC = ±50 × 10−6 (39.2241 mV) + 35 × 10−6 (100.0000 mV) = ±0.005 mV. (12)

Reference temperature emf and uncertainty

In order to use the law of intermediate temperatures, the thermocouple emf corresponding to the reference

junction temperature must be determined. This is accomplished by using linear interpolation in the ther-

mocouple table. To illustrate, the reference temperature was measured to be 32.5± 0.5 ◦C. Using the values

in Table 3, the reference junction emf is computed as

Table 3. An excerpt from the Platinel II thermocouple table used to determine the reference junction emf.

Temperature (◦C) Thermocouple emf (mV)

32 0.9888

33 1.0208

emfREF =
(

emf2 − emf1
T2 − T1

)
(TREF − T1) + emf2

=
(

1.0208 − 0.9888
33 − 32

)
(32.5 − 32) + 0.9888 = 1.0048 mV. (13)

The uncertainty in the reference junction emf is calculated from

UemfREF =
demf
dT

UT . (14)

The derivative in Eq. (14) is approximated from the data in Table 3. Consequently, the uncertainty in the

reference junction emf is then given by

UemfREF =
(

1.0208 − 0.9888
33 − 32

)
× 0.5 = 0.02 mV. (15)

Hence the emf of a thermocouple at the reference junction is 1.01 ± 0.02 mV.
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Thermocouple temperature and uncertainty

The temperature of the thermocouple is determined as follows: First, the emf of the thermocouple and

reference junctions are combined,

emfT = emfREF + emfM = 1.0048 + 39.2241 = 40.2289 mV. (16)

Next, linear interpolation is used to find the corresponding temperature. Using data from Table 4,

Table 4. An excerpt from the Platinel II thermocouple table used to determine the thermocouple tempera-

ture.

Temperature (◦C) Thermocouple emf (mV)

966 40.1933

967 40.2327

T =
(

T2 − T1

emf2 − emf1

)
(emfT − emf1) + T1

=
(

967 − 966
40.2327 − 40.1933

)
(40.2289 − 40.1933) + 966 = 966.9 ◦C. (17)

To estimate the uncertainty in the thermocouple temperature, the uncertainties in the emf of the reference

junction and thermocouple are first combined to yield,

UemfT =
(
U2

emfM
+ U2

emfREF

) 1
2 =

(
0.0052 + 0.022

) 1
2 = ±0.02 mV. (18)

Next, the uncertainty calculated in Eq. (18) is propagated through the thermocouple table to yield,

UT =
dT

demf
Uemf =

(
967 − 966

40.2327 − 40.1933

)
× 0.02 = ±0.5 ◦C. (19)

Finally, the thermocouple calibration table is assumed to have an accuracy of ±1%. Consequently, the

calibration uncertainty of the thermocouple table is

UCAL = ±0.01 × 966.9 = ±9.7 ◦C ≈ ±10 ◦C. (20)

Therefore, the uncertainty in the temperature of the body is

UTA =
(
U2

T + U2
CAL

) 1
2 =

(
0.52 + 102

) 1
2 = ±10 ◦C. (21)

Consequently, the temperature of the body is TA = 970 ± 10 ◦C.

Surface emissivity calculations

When plotting 1
TA

and 1
Tb

, the uncertainties in these variables are computed through error propagation.

Hence the uncertainty in 1
Tb

is given by

U 1
Tb

=
d
(

1
Tb

)
dTb

UTb =
1

T 2
b

UTb =
3

12062
= 2 × 10−6 K−1. (22)
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Similarly, the uncertainty in 1
TA

is computed as

U 1
TA

=
d
(

1
TA

)
dTA

UTA =
1

T 2
A

UTA =
10

12402
= 6 × 10−6 K−1. (23)

Additionally, because the uncertainties are assumed symmetric, only the absolute values are taken.

The emissivity of the body is found from

b =
c2

λ
ln ελ, (24)

where b is the intercept of a fitted line obtained through regression analysis. The emissivity is then directly

computed from

ελ = exp
(

c2b

λ

)
. (25)

To compute the uncertainty in ελ, error propagation through Eq. (25) is used. Hence,

Uελ
=

dελ

db
Ub = exp

(
c2b

λ

)
c2

λ
Ub =

c2

λ
ελUb = 0.2

(
14384
0.66

)
× 3.67085E − 05 = ±0.1, (26)

where the uncertainty in the intercept is(
Upper 95% − Lower 95%

2

)
= 3.67085E − 05. (27)
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Figure 5. Excel worksheet used for data analysis.
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Figure 6. Excel worksheet used for data analysis.
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Figure 7. Excel worksheet used for data analysis.
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Figure 8. Linear regression output.
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Figure 9. Linear regression output.
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